

<https://zz.tt/cnf7>

A modal linear logic

— its proof theory and semantics —

Yosuke Fukuda
Kyoto Tachibana University
yf@lambda.ski

Linear logic and its "modal" extension

Linear logic as a refinement of intuitionistic logic

$A_1, \dots, A_n \vdash C$
in intuitionistic logic

$$\xrightarrow{(-)^\circ}$$

$!(A_1)^\circ, \dots, !(A_n)^\circ \vdash (C)^\circ$
in linear logic

Modal linear logic as a refinement of intuitionistic modal logic

$\Box A_1, \dots, \Box A_n, B_1, \dots, B_m \vdash C$
in modal logic

$$\xrightarrow{(-)^\circ}$$

$(\Box A_1, \dots, \Box A_n, B_1, \dots, B_m \vdash C)^\circ$
in **"modal linear logic"**

Today's talk

Introduction { **① Linear logic as a refinement of ordinary logic**

Previous work [F. & Yoshimizu '19] { **② A "modal linear logic" for intuitionistic S4**
a subsystem of *subexponential linear logic* [Danos et al. '95][Nigam et al. '11]

Recent result { **③ A categorical model for the modal linear logic**
an adjoint model based on the LNL model [Benton '95]

Linear Logic: a refinement of ordinary logic

Linear logic

Linear logic is ...

- a "resource-sensitive" logic that every assumption is used "linearly" unless it is tagged with the $!$ -modality
 - $!A$ roughly means "infinitely many" (possibly zero) assumptions of A
- a "refinement" of ordinary logic (classical logic / intuitionistic logic) in the sense that the ordinary logics can be embedded into L.L. via a translation

Judgments with Linear Connectives

- $A, (A \multimap B) \vdash B$
- $A, (A \multimap B) \not\vdash A \otimes B$
- $A \not\vdash A \otimes A$
- $A, B \not\vdash A$

Judgments with Exponentials

- $!A, (A \multimap B) \vdash B$
- $!A, (A \multimap B) \vdash !A \otimes B$
- $!A \vdash !A \otimes !A$
- $A, !B \vdash A$

A proof theory of linear logic: Intuitionistic MELL

The syntax of **MELL** (*Multiplicative Exponential Linear Logic*) is as follows:

Grammar

$$A, B ::= p \mid A \otimes B \mid A \multimap B \mid !A$$
$$\Gamma, \Delta ::= \{A_1, \dots, A_n\} \quad (\text{a multi-set of formulae})$$

Judgment

$$\Gamma \vdash A$$

- To prove the judgment $B_1, \dots, B_n \vdash A$, we basically need to consume each of the formulae B_1, \dots, B_n exactly once.

Inference rule of MELL

Axiom / Cut

$$\frac{}{A \vdash A} \text{Ax}$$

$$\frac{\Gamma \vdash A \quad A, \Delta \vdash B}{\Gamma, \Delta \vdash B} \text{Cut}$$

Linear connectives

$$\frac{\Gamma, A, B \vdash C}{\Gamma, A \otimes B \vdash C} \otimes L$$

$$\frac{\Gamma \vdash A \quad \Delta \vdash B}{\Gamma, \Delta \vdash A \otimes B} \otimes R$$

$$\frac{\Gamma \vdash A \quad \Delta, B \vdash C}{\Gamma, \Delta, A \multimap B \vdash C} \multimap L$$

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \multimap B} \multimap R$$

Exponential modality

$$\frac{\Gamma \vdash B}{\Gamma, !A \vdash B} W$$

$$\frac{\Gamma, !A, !A \vdash B}{\Gamma, !A \vdash B} C$$

$$\frac{\Gamma, A \vdash B}{\Gamma, !A \vdash B} D$$

$$\frac{! \Gamma \vdash A}{! \Gamma \vdash !A} P$$

$(! \Gamma \stackrel{\text{def}}{=} \{ !A \mid A \in \Gamma \})$

Examples of derivation in linear logic

Derivable judgment: $A, (A \multimap B) \vdash B$

$$\frac{\frac{\frac{}{A \vdash A} \text{Ax}}{A, (A \multimap B) \vdash B} \quad \frac{\frac{}{B \vdash B} \text{Ax}}{A, (A \multimap B) \vdash B}}{\multimap L}$$

Underivable judgment: $A, (A \multimap B) \not\vdash A \otimes B$

$$\frac{\frac{\frac{}{A \vdash A} \text{Ax}}{\vdots} \quad \frac{\frac{}{B \vdash A \otimes B} \text{Ax}}{\vdots}}{\frac{\frac{}{A, (A \multimap B) \vdash A \otimes B}}{\multimap L}}$$

$$\frac{\frac{\frac{}{A \vdash A} \text{Ax}}{\vdots} \quad \frac{\frac{}{A \multimap B \vdash B} \text{Ax}}{\vdots}}{\frac{\frac{}{A, (A \multimap B) \vdash A \otimes B}}{\otimes R}}$$

Examples with the exponential

Derivable judgment: $\mathbf{!}A, (A \multimap B) \vdash \mathbf{!}A \otimes B$

$$\begin{array}{c}
 \frac{}{A \vdash A} \text{Ax} \\
 \frac{}{A \vdash A} \text{D} \qquad \frac{}{B \vdash B} \text{Ax} \\
 \frac{}{!A \vdash A} \text{Ax} \qquad \frac{}{!A, (A \multimap B) \vdash B} \circ L \\
 \hline
 \frac{}{!A, !A, (A \multimap B) \vdash !A \otimes B} \otimes R \\
 \hline
 \frac{}{!A, (A \multimap B) \vdash !A \otimes B} \text{C}
 \end{array}$$

Property on MELL

Theorem. Cut-elimination(cf. [Lincoln et al. 1992])

If a judgment $\Gamma \vdash A$ is derivable, then there exists a *cut-free* proof for the same judgment.

Theorem. Embedding from intuitionistic logic

If a judgment $\Gamma \vdash A$ of LJ (intuitionistic prop. logic) is derivable, then there exists the corresponding proof in MELL.

Girard translation

Intuitionistic Prop. Logic

$$\vdash \mathcal{D}$$

$$\Gamma \vdash A$$

in LJ

$$(-)^\circ$$

Intuitionistic MELL

$$\vdash (\mathcal{D})^\circ$$

$$(\Gamma \vdash A)^\circ$$

in MELL

Definition. the (call-by-name) Girard translation [Girard '87][Maraist et al. '99]

Formula

$$(p)^\circ \stackrel{\text{def}}{=} p$$

$$(A \wedge B)^\circ \stackrel{\text{def}}{=} A^\circ \otimes B^\circ$$

$$(A \rightarrow B)^\circ \stackrel{\text{def}}{=} ! (A^\circ) \multimap (B^\circ)$$

Judgment

$$(A_1, \dots, A_n \vdash B)^\circ$$

$$\stackrel{\text{def}}{=} !A_1^\circ, \dots, !A_n^\circ \vdash B^\circ$$

Modal Linear Logic

Towards "modal linear logic"

From LJ to MELL: Linear Logic as a refinement of Intuitionistic Logic

$\vdash \mathcal{D}$
 $\Gamma \vdash A$
in LJ

$$\xrightarrow{(-)^\circ}$$

$\vdash (\mathcal{D})^\circ$
 $(\Gamma \vdash A)^\circ$
in MELL

Its modal extension: "Modal Linear Logic" as a refinement of Modal Logic

$\vdash \mathcal{D}$
 $\square \Delta, \Gamma \vdash A$
in LJ $^\square$
[Troelstra & Schwichtenberg '96]

$$\xrightarrow{(-)^\circ}$$

$\vdash (\mathcal{D})^\circ$
 $(\square \Delta, \Gamma \vdash A)^\circ$
in "modal linear logic"

On the naïve attempt for "modal linear logic"

If we introduce "modal linear logic" as a linear logic with a \Box -modality:

$$A ::= p \mid A \multimap B \mid !A \mid \Box A$$

$$\Delta, \Gamma, \Sigma ::= \{A_1, \dots, A_n\} \quad (\text{a multi-set of formulas})$$

with the \Box -rules (e.g., as in [Troelstra & Schwichtenberg '96])

$$\frac{\Gamma, A \vdash B \quad \Box \Gamma \vdash A}{\Gamma, \Box A \vdash B} \quad \frac{\Box \Gamma \vdash A}{\Box \Gamma \vdash \Box A} \quad \text{where} \quad \Box \Gamma \stackrel{\text{def}}{=} \{\Box A \mid A \in \Gamma\}$$

$$\frac{\Gamma, A \vdash B}{\Gamma, !A \vdash B} \quad \frac{! \Gamma \vdash A}{! \Gamma \vdash !A}$$

Fact: We cannot give a Girard trans. from **modal logic** to **this logic**

Problem on the naïve formulation

The problem stems from the "non-canonicity" on the modalities

(cf. [Schellinx '94][Baelde '08]; and many studies on "proof-theoretic semantics")

Canonicity on the logical connectives

$$\frac{\Gamma, A, B \vdash C}{\Gamma, A \otimes B \vdash C} \otimes L$$

$$\frac{\Gamma \vdash A \quad \Delta \vdash B}{\Gamma, \Delta \vdash A \otimes B} \otimes R$$

$$\frac{\Gamma, A, B \vdash C}{\Gamma, A \star B \vdash C} \star L$$

$$\frac{\Gamma \vdash A \quad \Delta \vdash B}{\Gamma, \Delta \vdash A \star B} \star R$$

Then, $A \otimes B \vdash A \star B$ and $A \star B \vdash A \otimes B$ are derivable.

Non-canonicity on the modalities

$$\frac{\Gamma, A \vdash B}{\Gamma, \Box A \vdash B}$$

$$\frac{\Box \Gamma \vdash A}{\Box \Gamma \vdash \Box A}$$

$$\frac{\Gamma, A \vdash B}{\Gamma, !A \vdash B}$$

$$\frac{! \Gamma \vdash A}{! \Gamma \vdash !A}$$

Then, $\Box A \vdash !A$ and $!A \vdash \Box A$ are not derivable.

Solution to the problem

From the observation of *subexponential linear logic* [Danos et al. '95][Nigam et al. '11] and *adjoint logic* [Reed '09][Licata et al. 16][Pruiksma et al. '18],

Modalities (i.e., exponentials) must be layered w.r.t. a preorder \preceq

General inference rule

For multi-exponentials (called *subexponentials*) $\{!_i\}_{i \in I}$ with $!_0 \prec !_1 \prec \dots \prec !_n$, we define the promotion rule by

$$\frac{!_n X, \dots, !_1 Y, !_k Z \vdash A}{!_n X, \dots, !_1 Y, !_k Z \vdash !_k A} \text{ Prom. for } !_k$$

Sequent calc. of the modal linear logic S4 [F. & Yoshimizu '19]

The **modal linear logic**, called **MELL[!]**, is introduced as an intuitionistic fragment of subexponential L.L. with two subexponentials $(!, \Box)$

Syntax

$$A ::= p \mid A \otimes B \mid A \multimap B \mid !A \mid \Box A$$

$$\Delta, \Gamma ::= \{A_1, \dots, A_n\} \quad (\text{a multi-set of formulae})$$

Inference rule

$$\frac{\Gamma, A \vdash B}{\Gamma, \Box A \vdash B}$$

$$\frac{! \Delta \vdash A}{! \Delta \vdash \Box A}$$

$$\frac{\Gamma, A \vdash B}{\Gamma, !A \vdash B}$$

$$\frac{! \Delta, ! \Gamma \vdash A}{! \Delta, ! \Gamma \vdash ! A}$$

(with the weakening and contraction rules for $!$ and \Box)

$$\frac{}{A \vdash A}$$

$$\frac{\Gamma \vdash A \quad A, \Gamma' \vdash B}{\Gamma, \Gamma' \vdash B}$$

$$\frac{\Gamma, A, B \vdash C}{\Gamma, A \otimes B \vdash C}$$

$$\frac{\Gamma \vdash A \quad \Delta \vdash B}{\Gamma, \Delta \vdash A \otimes B}$$

$$\frac{\Gamma \vdash A \quad \Delta, B \vdash C}{\Gamma, \Delta, A \multimap B \vdash C}$$

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \multimap B}$$

Property: Cut-elimination theorem

Theorem. Cut-elimination

If a judgment $\Gamma \vdash A$ is derivable in MELL[!], then there is a *cut-free* proof for the same judgment.

Proof. (sketch)

By simultaneous induction, we show that the followings are admissible:

$$\frac{\Gamma \vdash A \quad A, \Delta \vdash B}{\Gamma, \Delta \vdash B}$$

$$\frac{\Gamma \vdash !A \quad (!A)^n, \Delta \vdash B}{\Gamma, \Delta \vdash B}$$

$$\frac{\Gamma \vdash \Box A \quad (\Box A)^n, \Delta \vdash B}{\Gamma, \Delta \vdash B}$$

where $(C)^n$ means the multi-set that has n -occurrences of C .

Property: Modal Girard translation

Theorem. Embedding from modal logic

If a judgment $\Gamma \vdash A$ is derivable in LJ^\square , then there is a corresponding proof in MELL^{\boxdot} .

Proof. By modal Girard translation.

By mapping a derivation $\square\Delta, \Gamma \vdash A$ to $\boxdot(\Delta)^\circ, !(\Gamma)^\circ \vdash A^\circ$, where

$$(p)^\circ \stackrel{\text{def}}{=} p$$

$$(A \wedge B)^\circ \stackrel{\text{def}}{=} A^\circ \otimes B^\circ$$

$$(A \rightarrow B)^\circ \stackrel{\text{def}}{=} ! (A^\circ) \multimap (B^\circ)$$

$$(\square A)^\circ \stackrel{\text{def}}{=} \boxdot (A^\circ)$$

A semantics for the modal linear logic

On the semantics

Derivation in the modal linear logic

$$\begin{array}{c} \vdash \mathcal{D} \\ \Gamma \vdash A \end{array}$$

in MELL[!]

Denotation of the derivation

$$\llbracket \begin{array}{c} \vdash \mathcal{D} \\ \Gamma \vdash A \end{array} \rrbracket$$

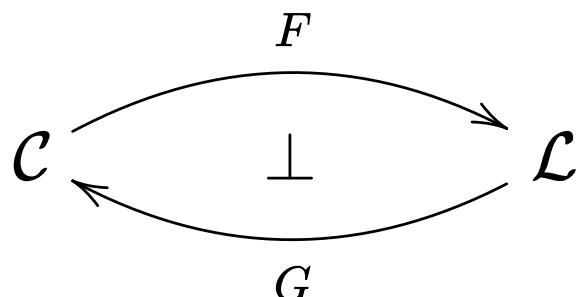
in "some structure"

Models of modal logic and linear logic

Modal category for S4 (e.g., [Hofmann '99][de Paiva & Ritter '16][Kavvos '20])

- \mathcal{C} : cartesian closed category
- \square : an endo-functor on \mathcal{C}
(a monoidal comonad)

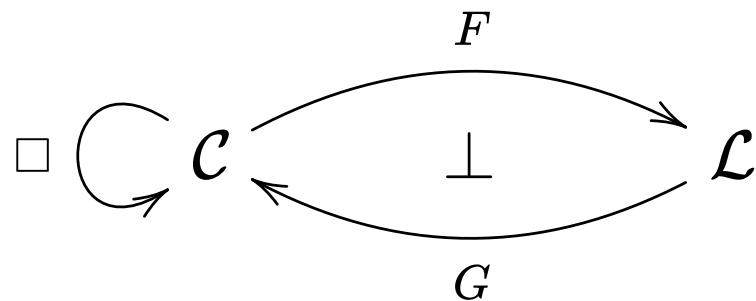
Linear-Non-Linear (LNL) model [Benton '95]



- \mathcal{C} : cartesian closed category
- \mathcal{L} : symmetric monoidal closed category
where (F, G) forms a sym. mon. adjunction
- $! \stackrel{\text{def}}{=} F \circ G$
(*Linear Exponential Comonad*)

Adjoint model of the modal linear logic

Model of the modal linear logic



- \mathcal{C} : CCC
 - \square is a product-preserving comonad
- \mathcal{L} : SMCC
- (F, G) forms a symmetric monoidal adjunction

Interpretation (in \mathcal{L})

- For formulae:
 - $\llbracket !A \rrbracket \stackrel{\text{def}}{=} FG \llbracket A \rrbracket$
 - $\llbracket \Box A \rrbracket \stackrel{\text{def}}{=} F \square G \llbracket A \rrbracket$
 - etc
- For derivations:
 - $\llbracket \Box \Delta, !\Gamma, \Sigma \vdash D \rrbracket$ is given by $(\bigotimes_{A_i \in \Delta} F \square G \llbracket A_i \rrbracket)$
 - $\bigotimes (\bigotimes_{B_j \in \Gamma} F G \llbracket B_j \rrbracket)$
 - $\bigotimes (\bigotimes_{C_k \in \Sigma} \llbracket C_k \rrbracket) \longrightarrow \llbracket D \rrbracket$

Concluding remark

Research related to "modal linear logic"

"A modal view of linear logic" [Martini & Masini '94]

- A translation from classical S4 into full (i.e., multiplicative-additive-exponential) linear logic, using the Grisin–Ono translation

"A linear approach to modal proof theory" [Schellinx '96]

- A "proof-normalization"-preserving translation from classical S4 into "bi-colored linear logic" with subexponential pairs $\langle !_0, ?_0 \rangle$ and $\langle !_1, ?_1 \rangle$
- The translation is given as an extension of "linear decoration"

[Danos–Jotnet–Schellinx '93]

"On the cut-elimination of the modal μ -calculus: Linear Logic to the rescue"

[Bauer & Saurin '25]

- A "modal linear" μ -calculus to discuss the cut-elimination theorem for the modal μ -calculus

Summary

Modal linear logic is an integration of (S4) modal logic and linear logic

Proof theory (λ -calc. under Curry–Howard)

- sequent calculus: MELL + $!$ -modality
- modal linear λ -calc. (not mentioned in this talk)

λ^\square [Pfenning & Davies '01] + DILL [Barber & Plotkin '97]

Model



- \mathcal{C} : CCC with a monoidal comonad \square
- \mathcal{L} : SMCC
- (F, G) : a sym. mon. adjunction
- $! \stackrel{\text{def}}{=} FG; \quad ! \stackrel{\text{def}}{=} F\square G$

Some interesting directions (?)

- Extension to multi-modalities
("adjoint logic" / "subexponential linear logic")
- Extension to graded modalities, bounded exponentials, etc.
("graded modal logic" / "bounded linear logic")

Today's slide

Appendix

Reference

- [Baelde 2008] [A Linear Approach to the Proof-theory of Least and Greatest Fixed Points](#)
- [Barber 1996] [Dual Intuitionistic Linear Logic](#)
- [Barber & Plotkin 1997] Dual Intuitionistic Linear Logic (unpublished note)
- [Bauer & Saurin 2025] [On the cut-elimination of the modal \$\mu\$ -calculus: Linear Logic to the rescue](#)
- [Benton 1995] [A mixed linear and non-linear logic: Proofs, terms and models](#)
- [Danos et al. 1995] [On the linear decoration of intuitionistic derivations](#)
- [de Paiva & Ritter 2016] [Fibrational Modal Type Theory](#)
- [Fukuda & Yoshimizu 2019] [A Linear-Logical Reconstruction of Intuitionistic Modal Logic S4](#)
- [Girard 1987] [Linear logic](#)
- [Hofmann 1999] [Semantics of linear/modal lambda calculus](#)
- [Kavvos 2020] [Dual-Context Calculi for Modal Logic](#)
- [Licata et al. 2016] [Adjoint Logic with a 2-Category of Modes](#)
- [Lincoln et al. 1992] [Decision problems for propositional linear logic](#)
- [Maraist et al. 1997] [Call-by-name, call-by-value, call-by-need and the linear lambda calculus](#)
- [Martini & Masini 1994] [A Modal View of Linear Logic](#)
- [Nigam et al. 2011] [Specifying Proof Systems in Linear Logic with Subexponentials](#)
- [Pfenning & Davies 2001] [A judgmental reconstruction of modal logic](#)
- [Pruiksma et al. 2018] [Adjoint Logic](#)
- [Reed 2009] [A Judgmental Deconstruction of Modal Logic](#)
- [Schellinx 1994] [The Noble Art of Linear Decorating](#)
- [Schellinx 1996] [A Linear Approach to Modal Proof Theory](#)
- [Troelstra & Schwichtenberg 1996] [Basic Proof Theory](#)

Typed λ -calc. for the modal linear logic [F. & Yoshimizu '19]

A typed λ -calc. for modal linear logic, an instance of the adjoint model

- It is defined as an integration of λ^\square [Pfenning & Davies '00] / DILL [Barber '96]
- It corresponds to a natural deduction for modal linear logic under the Curry–Howard correspondence

Syntax

$$\begin{aligned} A ::= & p \mid A \multimap B \mid !A \mid \Box A \\ M ::= & x \mid \lambda x : A. M \mid MN \\ & \mid !M \mid \mathbf{let} \ !x \Leftarrow M \mathbf{in} N \\ & \mid \Box M \mid \mathbf{let} \ \Box x \Leftarrow M \mathbf{in} N \end{aligned}$$

$$\Delta, \Gamma, \Sigma ::= \{x_1 : A_1, \dots, x_n : A_n\}$$

Typing Judgment

$$\Delta; \Gamma; \Sigma \vdash M : A \quad (\approx \Box \Delta, !\Gamma, \Sigma \vdash A)$$

Typing rules of the modal linear λ -calc.

Rules for \multimap

$$\frac{\Delta; \Gamma; \Sigma, x : A \vdash M : B}{\Delta; \Gamma; \Sigma \vdash \lambda x. M : A \multimap B} \text{-}\multimap\text{I}$$

$$\frac{\Delta; \Gamma; \Sigma \vdash M : A \multimap B \quad \Delta; \Gamma; \Sigma \vdash N : A}{\Delta; \Gamma; \Sigma, \Sigma' \vdash MN : B} \text{-}\multimap\text{E}$$

Rules for $!$ and \Box

$$\frac{\Delta; \Gamma; \emptyset \vdash M : A}{\Delta; \Gamma; \emptyset \vdash !M : !A} !\text{-I}$$

$$\frac{\Delta; \emptyset; \emptyset \vdash M : A}{\Delta; \emptyset; \emptyset \vdash \Box M : \Box A} \Box\text{-I}$$

$$\frac{\Delta; \Gamma; \Sigma \vdash M : \Box B \quad x : A, \Delta; \Gamma; \Sigma' \vdash N : B}{\Delta; \Gamma; \Sigma, \Sigma' \vdash \text{let } !x \Leftarrow M \text{ in } N : B} \Box\text{-E}$$

(The rule $!$ -E is defined similarly to \Box -E)

Reduction

Reduction rule

$$\begin{aligned} (\bar{\lambda}x : A. M) N &\rightsquigarrow M[N/x] \\ (\mathbf{let} \ !x \Leftarrow !N \mathbf{in} M) &\rightsquigarrow M[N/x] \\ (\mathbf{let} \ \Box x \Leftarrow \Box N \mathbf{in} M) &\rightsquigarrow M[N/x] \end{aligned}$$